The Infrared Spectra of Troponoid Compounds. VI. The Infrared and Raman Spectra of Tropolone, 3- and 4-Isopropyltropolones

By Yusaku Ikegami

(Received March 30, 1963)

In Part IV1) of this series, the infrared and Raman spectra of tropone (I) and their vibrational assignments were described. Analyses of the infrared spectra of many troponoids can be made on the basis of these findings. however, for the analyses of the infrared spectra of many tropolones, it is desirable to know the characters and the assignments of the infrared and Raman spectra of some typical tropolones. In the present paper, the Raman spectra of tropolone (II), 4-isopropyltropolone (hinokitiol) (III) and 3-isopropyltropolone (α thujaplicin) (IV) will be measured in carbon tetrachloride, and the vibrational assignments of these spectra will be discussed, together with their infrared spectra. All these tropolones are colorless crystals and are soluble in organic solvents suitable for the measurement of Raman Although the Raman spectra of II and III in benzene have been reported on already by Imanishi and Ito,2,3 more detailed results were obtained in the present measurements.

Measurements

Raman spectra were measured with a Shimadzu automatic-grating Raman spectrometer, type GRS-750, using the Hg-e line (4358Å) from the Toronto-

type mercury lamp as the exciting line. A solution containing ethyl violet and p-nitrotoluene in denatured alcohol was used as the filter for the light source.¹⁾ Each sample was measured in carbon tetrachloride (25~35% conc.) by the use of a Raman tube 8 mm. in inner diameter. As the three tropolones are easily colored on exposure to light, the purified samples were preserved in a dark place and caution was taken to shorten the time required for the measurement. Relative intensities in each spectrum (Tables I—III) are given, taking the peak intensity of the most intense line, around 1500 cm⁻¹, as the standard.

Infrared spectra were measured with a Perkin-Elmer model 21 infrared spectrophotometer, using calcium fluoride, sodium chloride and potassium bromide prisms.

Tropolone (m. p. 51°C), 4-isopropyltropolone (m. p. 52°C) and 3-isopropyltropolone (m. p. 34°C) were purified several times by recrystallization and vacuum distillation.

Results and Discussion

Characteristic Features Appearing in the Raman Spectra of Four Troponoids.—The Raman lines observed on three tropolones are shown in Fig. 1, together with those of tropone measured earlier.¹⁾ All these spectra exhibit the most intense line around 1500 cm⁻¹. Further, some strong lines were found which correspond well in their wave numbers and relative intensities to the intense lines of the

¹⁾ Y. Ikegami, This Bulletin, 35, 967 (1962).

²⁾ S. Imanishi and M. Ito, ibid., 28, 75 (1955).

³⁾ S. Imanishi and M. Ito, ibid., 29, 632 (1956).

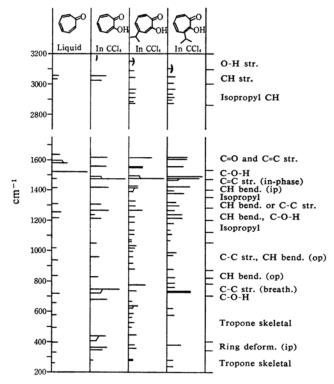


Fig. 1. Raman spectra of four troponoids.

tropone spectrum. Since these characteristic lines in the four troponoids are related to the vibrations of the tropone skeletal part, tentative assignments can be made with reference to the assignments for the spectra of tropone¹⁾ and tropolone⁴⁾, as Fig. 1 shows.

The following features in the spectra are illustrated in Fig. 1.

(1) The Raman lines of the three tropolones corresponding to the vibrations belonging to

$$I \qquad a \qquad b$$

$$II: R_1=R_2=H$$

$$III: R_1=H, R_2=isopropyl$$

$$IV: R_1=isopropyl, R_2=H$$

A₁ species of tropone are strong in general. The Raman line due to the C-C in-phase stretching vibration in each spectrum is most intense, but not so strong as that of tropone in the relative intensity.

(2) In a spectrum of 3-isopropyltropolone, it is noticeable that the line due to the C-C in-phase stretching vibration is separated into two lines, at 1489 and 1476 cm⁻¹, with a

similar intensity. This fact suggests two possible tautomeric forms, IVa and IVb, for the structure of 3-isopropyltropolone. In the other region, also, some of the Raman lines are found to form pairs, such as 1618 and 1604, 1318 and 1295, 1263 and 1239, 985 and 965, 785 and 758, 728 and 724, and 275 and 234 cm⁻¹.

The existence of similar tautomeric forms must be considered also for 4-isopropyltropolone, and some paired lines, such as 1554 and 1549, 1426 and 1412, 1328 and 1293, 772 and 731, and 280 and 272 cm⁻¹, are pointed out. On the intramolecular hydrogen bonding of tropolone, it has been suggested that a highly mobile tautomeric hydrogen is located by the two equivalent potential minima.⁵⁰ Accordingly, it is natural to interpret the vibrational spectra of tropolones on the basis of a consideration of the tautomerism, except for those cases, such as the 5-monosubstituted tropolones, in which two tautomeric forms have the same structural model.

(3) The vibrations due to the C-O-H group are generally strong in the infrared spectra, 4,6,7) but weaker or indistinct in the Raman spectra.

⁴⁾ Y. Ikegami, ibid., 34, 94 (1961).

⁵⁾ H. P. Koch, J. Chem. Soc., 1951, 512.

⁶⁾ Y. Ikegami, This Bulletin, 34, 91 (1961).

⁷⁾ Y. Ikegami, J. Japanese Chem. (Kagaku-no-Ryoiki), 38, 33 (1959).

TABLE I. OBSERVED FREQUENCIES (Cm-1) AND THEIR POSSIBLE ASSIGNMENTS FOR TROPOLONE

Infrared Solution ^{a)}	Raman In CCl ₄	Assignment
3450 vwb 3151 mb 3120 mb	3229 0.5 b	O-H stretch.b)
3051 sh 3020 sh	3053 3.0 3023 1.8	CH stretch.
2001 w 1970 w 1903 vw 1832 vw 1817 sh 1774 w 1747 w		2×1000 $1000 + 953$ 2×953 2×917 or $1000 + 828$ $953 + 854$ $917 + 854$
1687 sh		919+767 or 854+828
1618 vs	1618 3.8	C=O and C=C stretch. ^{e)}
1555 s	1559 3.2	C=C and C=O stretch.c)
1490 vs	1490 sh	C-O-H group ^{b)}
1476 vs	1473 10	C=C stretch. (in-phase)
1444 s		C-C stretch.? or CH bend. (ip)
1425 sh	1418 4.2	CH bend. (ip)
1355 vw 1317 sh		2×675 767+551
1304 m	1304 1.9	CH bend. (ip) or C-C stretch.?
1267 vs 1251 vs 1213 m	1265 4.2 1239 w 1211 1.9	CH bend. (ip) C-O-H group ^{b)} CH bend. (ip)
1048 vw	1049 0.5	C-C stretch.
1000 vw	1045 0.5	CH bend. (op)
953 m	957 1.3	C-C stretch.
917 m	337 1.3	CH bend. (op)
873 w		2×434
854 w		CH bend. (op)
	828 1.1	CH bend. (op)
767 m		CH bend. (op)b)
	744 8.0	C-C stretch. (ring breath.)
726 sb	719 sh	C-O-H group (op)b)
713 s		
675 w	678 3.9	Skeletal deform.
654 vw 551 vw		
434 m	439 2.4	Skeletal deform.
404 m	403 sh	
	360 4.0	Skeletal deform. (ip)
	342 2.4 275 vw	Skeletal deform.

(vs: very strong, s: strong, m: medium, w: weak, vw: very weak, sh: shoulder, b: broad,
 ip: in-plane, op: out-of-plane)

Therefore, it is fairly difficult to distinguish the vibrations of the tropone skeletal part in the infrared spectra, especially in the finger-print region, because of the overlap with the strong and broad absorptions due to the C-O-H group. On the contrary, almost all of the skeletal vibrations are observed distinctly in the Raman spectra.

(4) In the spectra of 4- and 3-isopropyltropolones, the Raman lines due to the isopropyl group⁸ are found in the 2968~2872, 1393~1375 and 1188~1132 cm⁻¹ regions.

On the basis of these features, the following

a) The region of 3600~2000 cm⁻¹ was measured by using a calcium fluoride prism. The spectrum was measured in carbon tetrachloride (4000~900 cm⁻¹ range) and in carbon disulfide (900~400 cm⁻¹).

b) Refs. 4 and 6. c) Ref. 9.

⁸⁾ R. N. Jones and C. Sandorfy, "Chemical Application of Spectroscopy", Ed. by W. West, Interscience Publishers, New York (1956), pp. 336, 356.

Table II. Observed frequencies (cm^{-1}) and their possible assignments for 4-isopropyltropolone

			Inf	rared				Ra	man		.
So	lid ^{a,b)}	Liqu	id ^{b)}	Soluti	on ^{b,c)}	Vap	or ^{d)}		CCl ₄		Assignment
3533	vwb	3450	sh	3450	sh	_					
3215	sb	3195	sb	3150	m	3140	w	3231 3181 3146	wb	}	O-H stretch.
				3115	mb			3140	'	,	
				3027	w			3088 3043	w 0.4	}	Ring CH stretch.
2995											
2971		2060		2060		2000		2060			A CII
2957 2920		2960 2927		2968 2931		2980 2940			0.7		Asym. CH ₃ stretch. CH ₃ stretch. or 2×1475
2920	w	2921	w	2931	w	2340	311		0.5		1616+1293?
								2883			Tert. CH stretch.
2864	w	2868	w	2872	w	2890	w	2872	0.4		Sym. CH ₃ stretch.
				1997	vw						2×998
				1972							
1010		1004		1900		1000					2×951
1818	w	1804	w	1804 1775		1800	w				911+890 2×890
				1700							2×890
1609	vs	1615	vs	1617		1625	vs	1616	5.9		C=O and C=C stretch.
1547	vs	1551	s	1560 1546		1563	s	1554 1549	3.1	}	C=C and C=O stretch.
1487	vs	1499	sh	1496		1498	vs	1495		,	C-O-H group
1479 1462		1474	vsb	1472	vsb	1475	vsb	1475	10		C=C stretch. (in-phase)
1449				1442	s	1460	sh				CH ₃ degen. deform.
1425		1427	s	1112	5	1400	311	1426	1.3)	CII3 degen. deroim.
1417	S			1410	_	1422	m			}	Ring CH bend. (ip)
1412 1385		1412	S	1410 1385				1412 1389)	
						1370	sh	1307	311	{	CH ₃ sym. deform.
1360		1369		1367				1220	0.7)	
1328	w	1325	w	1330 1320 1299	m	1320	sh	1328	0.7	}	Ring CH bend. (ip) or C-C stretch.?
1301	m			1291		1290	sh	1293	0.7)	
				1281							n: 0** 1 // 1
1269	vs	1264 1250		1266 1256		1267	vsb	1266	3.0		Ring CH bend. (ip) C-O-H group
1220	sh	1225		1230		1229	sh	1222	0.5		Ring CH bend. (ip)
1188		1223	311	1230	311	1227	J.1	1222	0.5		C-O-H group
		1185	sh	1182		1176	vw	1188	0.4)	
				1142 1130				1132	0.2	}	Isopropyl group
1113				1100	*****			1106	0.2		
1105 1070		1057	***	1100 1066		1060	117	1106 1068			
10/0	111	1037	w	1058		1000	w	1058			
1013		1011	vw	1024 1009		1003	w	1030 1014	0.5	}	Ring C-C stretch.
998		0.7						991			Ring CH bend. (op)
960		954		951		042		957	W		Ring CH bend. (op)
950 933		947 913		946 911		943 905		914	117		Ring CH bend. (op)
877		891		890		303	111		w 0.3		Ring C-C stretch.
820		824		821		820	m	0.0	0.5	1	
		790		790						}	Ring CH bend. (op)

TABLE	TT ((Continued)
IABLE	11.	Continued

	In	frared		Raman	Assissant	
Solida, b)	Liquid ^{b)}	Solutionb,c)	Vapor ^d)	in CCl4	Assignment	
767 m 756 mb	769 m	769 m		772 3.9 756 ?	Ring C-C stretch. (ring breath.)	
	735 mb	735 sb	742 mb	731 0.9	C-O-H group (op)	
726 m	707 m	722 sh				
655 m	658 s 633 sh	660 m	658 m	662 vw 635 1.4	Tropone skeletal	
598 m 580 sh	612 m 582 sh 556 sh	610 w		620 sh 582 w 560 vw		
530 sh 503 w	522 sh 491 w			524 0.3 494 vw		
448 m	444 m			$(444 (1)^{e})$	Ring deform.	
				378 0.5 353 0.9	Ring deform.	
				280 0.2	Ring deform.	

- a) The region of 4000~2000 cm⁻¹ was measured as a crystalline film (Ref. 6) and the region lower than 2000 cm⁻¹ was measured in a potassium bromide disk.
- b) The region higher than 2000 cm⁻¹ was measured by using a calcium fluoride prism.
- c) In carbon tetrachloride (4000~900 cm⁻¹ range) and in carbon disulfide (900~600 cm⁻¹), ca. 5% conc.
- d) Ref. 10. e) Ref. 3.

remarks can be made concerning the assignments for the observed frequencies of tropolone, 4- and 3-isopropyltropolones.

Tropolone.—The observed frequencies of tropolone and their assignments are summarized in Table I. The infrared spectra of tropolone in the solid, liquid and vapor states and the assignments regarding the C-O-H group, the CH-stretching and some of the CH-bending vibrations have already been described in Parts II⁶⁾ and III⁴⁾.

In the 1650~1450 cm⁻¹ region, the most intense Raman line, at 1473 cm⁻¹, may easily be assigned to the totally symmetric stretching vibration of three C=C bonds. The two bands at 1618 and around 1555 cm⁻¹ may be explained as resulting from the participation of both C=O and C=C stretching vibrations, as has been described in the preceding paper.⁹⁾ These frequencies are considerably lower than those of the corresponding bands in tropone as a result of the conjugated chelation in a tropolone structure.

When the Raman spectrum in the 1450~ 1000 cm⁻¹ region is compared with that of tropone, the following lines corresponding to each other in frequency and relative intensity are found:

Tropone; 1412 (0.3), 1309 (0.4), 1254 (1.3), 1217 (0.6), 1017 cm^{-1} (0.2). Tropolone; 1418 (4.2), 1304 (1.9), 1265 (4.2), 1211 (1.9), 1049 cm^{-1} (0.5).

The vibrational frequencies due to the tropone skeletal part in tropolone are not greatly different from those of tropone. Therefore, the above frequencies can be assigned to the same vibrational modes as those of tropone, as is indicated in Table I. The band at 1265 cm⁻¹ is assumed to be related to the vibration of the C-O-H group,⁴⁾ and thus this band may be considered the overlap of two bands. The band at 1444 cm⁻¹ is assumed to correspond to the band at 1473 cm⁻¹ of tropone.

The infrared absorptions at 767 and 726 cm⁻¹ are assigned to the CH and OH out-of-plane bending vibrations respectively.⁴⁾ Of the remaining frequencies in the 1000~700 cm⁻¹ region, the two bands at 957 and 744 cm⁻¹ can be assigned to the C-C stretching vibrations, since these bands are strong in the Raman spectrum and correspond well to the vibrations belonging to A₁ species of tropone. The latter was also assigned similarly by Imanishi and Ito.^{2,3)} The other frequencies observed in this region are assumed mainly to be due to the CH bending vibrations, as indicated in Table I.

The bands in the region lower than 700 cm⁻¹ are assigned to the deformation vibrations of the tropone skeleton. Of these, the distinct Raman lines at 678, 360 and 342 cm⁻¹ are probably due to vibrations similar to the bands at 653, 396 and 329 cm⁻¹ of the tropone spectrum.¹⁰

4-Isopropyltropolone.—The observed frequencies, obtained from the infrared spectra in the

⁹⁾ Y. Ikegami, This Bulletin, 35, 972 (1962).

Table III. Observed frequencies (cm^{-1}) and their possible assignments for 3-isopropyltropolone

Infrared	1)	Raman		A
Liquid	Solution	In CCl4		Assignment
3450 wb		2102)	O II stratah
3170 mb	3095 wb	3102 w 3083 w	5	O-H stretch.
	3040 vw 3008 vw	3049 1.0 3007 0.5	}	Ring CH stretch.
2960 s	2962 s	2967 1.0	,	Asym. CH ₃ stretch.
2925 sh	2925 sh	2934 0.3	}	CH ₃ stretch. or 2×1463 ?
2890 sh	2888 sh	2913 0.7 2896 w)	Tert. CH stretch.
2865 m	2866 m	2872 0.5		Sym. CH ₃ stretch.
1618 s	1621 s	1618 5.2	}	C=O and C=C stretch.
1603 s	1603 s	1604 5.0)	
1551 vs	1554 vs	1553 3.7		C=C and C=O stretch. C-O-H group
1493 vs	1495 vs	1489 10	}	C=C stretch. (in-phase)
1465 110	1465	1476 9.0	J	
1465 vs 1425 s	1465 vs 1427 s	1463 sh 1420 6.0		CH ₃ degen. deform. Ring CH bend. (ip)
1394 vs	1395 vs	1393 0.8)	
1377 s	1378 s 1365 sh	1375 3.8	}	CH ₃ sym. deform., Ring CH bend. (i
1350 sh	1345 sh			Tert. CH deform.
1319 vw	1319 vw	1318 1.4	}	Ring CH bend. (ip) or C-C stretch.?
1292 s	1295 vs	1295 2.3)	1111g 011 011111 (1p) 01 0 0 01101111
1265 sh 1253 vs	1265 sh 1254 vs	1263 1.0	ļ	C-O-H group, Ring CH bend. (ip)
1233 vs	1237 vs	1239 3.5)	
1210 sh	1210 sh	1214 3.4	,	Ring CH bend. (ip)
1183 w 1132 w	1182 w 1130 w	1179 0.6 1132 vw	}	Isopropyl group
1105 w	1105 w	1106 w		
1060 m	1061 m	1065 W	,	
984 sh 967 m	984 m 968 m	985 1.4 965 0.4	}	Ring C-C stretch.
958 sh	953 m			Ring CH bend. (op)
894 sh	888 vw			
875 m	873 m	877 0.6		Ring C-C stretch.
900 c	809 s	822 1.2)	Ring CH bend. (op)
809 s 801 sh	799 m		}	Ring CH bend. (op)
	74.1	785 1.1	}	Isopropyl group
742 sb	764 sh 739 vs	758 1.0)	C-O-H group (op)
742 80	739 VS	728		
720 m	713 m	$\frac{728}{724}$ 6.2		Ring C-C stretch. (ring breath.)
689 m 659 m	690 w			
622 m		618 0.6		Tropone skeletal
569 m	572 0.7	010 0.0		Tropone skeletar
547 vw	0.2 0			
529 vw 502 vw				
462 m				
426 m	_	276 2 0		Ping deform (in)
		376 3.0 275 0.6)	Ring deform. (ip)
		234 0.6	}	Ring deform.

a) The region higher than 2000 cm⁻¹ was measured by using a calcium fluoride prism.

solid, liquid, solution and vapor states¹⁰ and from the Raman spectrum, are shown in Table II, together with their possible assignments. The OH and CH-stretching absorptions have already been discussed in Part II.⁶ Frequencies in the 1650~1470 cm⁻¹ region are due to the tropone skeletal stretching and C-O-H group vibrations, as in the case of tropolone.

The bands in the $1460 \sim 1442$, $1389 \sim 1360$ and 1188~1130 cm⁻¹ regions are assigned, respectively, to the CH3 degenerate deformation, the symmetric deformation and the skeletal vibrations of the isopropyl group.8,11) These bands are very weak in both infrared and Raman The assignments of the remaining spectra. bands in the 1470~1000 cm⁻¹ region were given with reference to those of tropolone and after consideration of the variation of absorptions according to the changes of state.4) The Raman lines at 1030 and 1014 cm⁻¹, as well as those at 1426 and 1412 cm⁻¹, are considered to be doublets due to the existence of two tautomeric forms, IIIa and IIIb.

It is possible to assign the intense Raman lines at 878 and 772 cm⁻¹ to the ring C-C stretching, and the absorption bands at 950, 820 and 790 cm⁻¹,¹² to the CH out-of-plane bending vibrations, which are expected to have a strong intensity. The broad absorption band at 735 cm⁻¹ is the OH out-of-plane vibration. The weak bands at 998 and 951 cm⁻¹ are probably assigned to the CH out-of-plane vibrations, which are to be expected in this region. The weak absorptions at 1997 and 1900 cm⁻¹ can be explained as the overtones of these vibrations.

3-Isopropyltropolone.—The observed frequencies and their possible assignments are summarized in Table III. The bands observed in the $2967\sim2865$ and $3049\sim3007\,\mathrm{cm}^{-1}$ regions belong to the CH stretching vibrations, and their frequencies differ little from those of 4isopropyltropolone. The broad infrared absorption in 3450~3095 cm⁻¹ is assigned to the OH stretching vibration, and the corresponding Raman lines are very weak. This OH absorption, which is strongest at 3170 cm⁻¹ in liquid, shifts to 3095 cm⁻¹ and its intensity decreases in carbon tetrachloride. The direction of the shift of absorption caused by the change of state agrees with that in the case of tropolone, but the frequencies in each state are lower by about 50 cm⁻¹ than those of many tropolones. Such lower frequencies are also observed in the spectra of 3, 7-dibromotropolones¹³⁾ and 3-quinonyltropolone (3090 cm⁻¹),¹⁴⁾ all of which have a bulky substituent at the 3-position of the tropolone ring.

Frequencies in the 1650~1470 cm⁻¹ region are assigned in the same manner as in the case of 4-isopropyltropolone. The Raman line at 1463 cm⁻¹ is assigned to the CH₃ degenerate deformation vibration, and the corresponding infrared band shows a strong intensity because of the overlap with the strong and broad absorption due to the C-O-H group. bands in 1395~1375 cm⁻¹, one shoulder at $1345 \, \text{cm}^{-1}$ and two band in $1183 \sim 1130 \, \text{cm}^{-1}$ are all assigned to the vibration due to the isopropyl group. Of these, the strong intensity of the infrared absorption band at 1394 cm⁻¹ indicates the overlapping with the ring CH bending absorption, as its to be expected from the fact that 3-bromotropolone shows the absorption band at 1375 and 1353 cm⁻¹ (in carbon tetrachloride).

The broad absorption band at 1233 cm⁻¹ in the liquid spectrum appears to be related to the C-O-H group. In carbon tetrachloride, this band shifts to the higher wave number side, merging around 1254 cm⁻¹, as in cases of tropolone and 4-isopropyltropolone.⁶ The remaining bands in the 1470~1000 cm⁻¹ region have been assigned with reference to the assignments for the spectra of tropolone and 4-isopropyltropolone.

As may be seen in Fig. 1, a line at 877 cm⁻¹ and two paired Raman lines at 985 and 965 cm⁻¹ and at 728 and 724 cm⁻¹ are assigned to the ring C-C stretching vibrations. The broad absorption band, strongest at 742 cm⁻¹ in the liquid spectrum, shifts to 739 cm⁻¹ in carbon tetrachloride; this is assigned to the OH outof-plane vibration. Among the remaining bands in the 1000~700 cm⁻¹ region, those which are strong in the infrared spectrum and weak in the Raman spectrum are probably to be assigned to the CH out-of-plane bending vibrations, as Table III indicates. The two Raman lines at 785 and 758 cm⁻¹ are assumed to be due to the isopropyl group.8) The Raman lines at 618 and 376 cm⁻¹ and the paired ones at 275 and 234 cm⁻¹, which are all distinct in the Raman spectrum, are probably to be assigned to the same vibrations as those of tropone at 653, 396 and 259 cm⁻¹ respectively.

The author wishes to express his deep gratitude to Professor Susumu Kinumaki, Professor

¹⁰⁾ S. Kinumaki, K. Aida and Y. Ikegami, Sci. Repts. Research Inst., Tohoku Univ., Ser. A, 8, 263 (1956).
11) L. J. Bellamy, "The Infrared Spectra of Complex

Molecules", Methuen, London (1958), pp. 13, 26.

12) From the results of spectral measurement made on various 2, 4- and 2, 6-disubstituted tropones, Takase et al. concluded that the absorption bands at 820 and 790 cm⁻¹ correspond to the structures of IIIa and IIIb respectively. (K. Takase, M. Yasunami and T. Nozoe; Presented at the

¹⁴th Annual Meeting of the Chemical Society of Japan,
Tokyo, April, 1961.)

14) S. Seto

¹³⁾ K. Ogura and Y. Ikegami, Bull. Chem. Research Inst. Non-Aqueous Solutions, Tohoku Univ., 9, 23 (1959).
14) S. Seto, Y. Ikegami and H. Sato, ibid., 11, 85 (1962);

S. Seto, Y. Ikegami and H. Sato, ibid., 11, 85 (1962)
 S. Seto and H. Sato, This Bulletin, 35, 349 (1962).

September, 1963]

Shuichi Seto and Professor Koyo Aida for their unfailing guidance during the course of this work. He is also indebted to Miss Hisako Minegishi for her technical cooperation in the spectral measurements.

The Chemical Research Institute of
Non-Aqueous Solutions
Tohoku University
Katahira-cho, Sendai